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Abstract
We study the random packing of non-spherical particles by computer simulation
to investigate the effect of particle shape and aspect ratio on packing density
and microstructure. Packings of cut spheres (a spherical segment which is
symmetric about the centre of the sphere) are simulated to assess the influence
of a planar face on packing properties. It turns out that cut spheres, in common
with spherocylinders and spheroids, pack more efficiently as the particle’s
aspect ratio is perturbed slightly from unity (the aspect ratio of a sphere) to reach
a maximum density at an aspect ratio of approximately 1.25. Upon increasing
the aspect ratio further the cut spheres pack less efficiently, until approximately
an aspect ratio of 2, where the particles are found to form a columnar phase. The
amount of ordering is sensitive to simulation parameters and for very thin disks
the formation of long columns becomes frustrated, resulting in a nematic phase,
in marked contrast to the behavior of long thin rods which always randomly
pack into entangled isotropic networks. With respect to coordination numbers
it appears that cut spheres always pack with significantly fewer contacts than
required for isostatic packing.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Random particle packings [1] have been widely investigated and form important materials such
as granular media (sand, powders), randomly oriented clay particles [2] and fibers in biological
cells [3]. Packed particles very often have a non-spherical shape [4–6], which for example
is important for shape-induced frustration of hexagonal order in polyhedral colloids [7],
random packings of ellipsoids [8] and liquid crystals [9]. Random packings of spheres and
spherocylinders further demonstrate the effect of shape on packing properties. Previously we
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(a) (b)

(c) (d)

Figure 1. (a) Sketch of a spherocylinder, (b) spheroid and (c) cut sphere with aspect ratios of
(L + D)/D, L/D and D/L . (d) Graphical illustration of variables that are calculated within the
mechanical contraction method: �rci j connects the contact point to the center of particle i and the
distance δi j quantifies the amount of overlap.

found, using the mechanical contraction method [5], that spherocylinders reach a maximum
packing volume fraction upon slightly deviating from a spherical shape. Later Donev et al [10]
showed, using event-driven molecular dynamics, that spheroids display a similar behavior. To
compare these two simulation methods [5, 10] in the present study we apply the mechanical
contraction method to spheroids. Both spherocylinders and spheroids are smooth convex
objects, which raises the question as to what role this property plays in determining the density
as well as the microstructure of a random packing. Therefore we have investigated the random
packing of non-smooth particles with planar faces, namely cut spheres (figure 1(c)).

The latter have the advantage that one can gradually transform a sphere-like shape to a
disk-like shape with truly planar faces in a controlled way [11], which allows us to study the
influence of a flat surface on the packing geometry. The aspect ratio of a cut sphere is defined
as D/L, where D is the sphere diameter and L is the thickness. Furthermore, in the limit of
large aspect ratio thin cut spheres become identical to short cylinders.

The primary aim of this work is to assess whether characteristic features such as the near-
sphere density maximum for spheroids and spherocylinders, which are similar in shape, are
particular to these smooth convex bodies or whether this maximum also occurs for particles
with planar faces. In addition to the effect of shape on packing density we also investigate
the packing microstructure, in particular with respect to the influence of planar faces on
orientational correlations.

2. Method

The mechanical contraction method [5] is an attempt to inhibit any overlap between the
system’s particles by minimally disturbing their positions as the system is compressed. A dilute
random configuration of non-overlapping particles is prepared in a cubic box with periodic
boundary conditions. In each step of the simulation the volume of the periodic box is reduced
by a small amount �V and all particle positions are uniformly dilated while their orientations
do not change. At a certain number of steps particles start overlapping and this overlap is
then removed. The simulation is stopped when it is no longer possible to remove the overlap
between particles with a reasonable amount of computational effort. The final configuration is
the one from the previous simulation step where none of the particles were overlapping.
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To remove overlap between cut spheres or spheroids the overlap removal scheme, as
described for the mechanical contraction method for spherocylinders [5], has to be adapted.
When two particles i and j overlap, the amount of overlap δi j , a contact normal ni j and a
contact point at the center of the overlap are calculated (figure 1(d)). If particle i is translated
and rotated, the rate with which the overlap changes with particle j can be quantified to first
order as

∂δi j

∂ t
= (�vi + �ωi × �rci j ) · n̂i j , (1)

where vi and ωi are the respective translational and angular velocity and rci j is the vector
connecting the contact point with the center of mass of particle i . In order to remove overlap
efficiently in the case of C contacts an overlap removal speed s is introduced as

si =
C∑

j=1

δi j
∂δi j

∂ t
, (2)

where the factor δi j is included in order to bias the rate at which the particles break contact
in favor of those which are overlapping the most. To fix the ratio between translational and
rotational velocity a kinetic energy-type constraint is introduced for particle i :

�vi · �vi + �ωi I �ωi = 1, (3)

where I is a diagonal matrix that relates to the particle’s moment of inertia. The direction
which maximizes the rate of overlap removal is sought by the use of Lagrange multipliers with
equation (2) and the constraint equation (3) to obtain vi and ωi :

�vi =
C∑

j=1

δi j n̂i j (4)
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(5)

Once vi and ωi are calculated, particle i is moved such that it moves half the distance of
the smallest δi j . Particle i is actually displaced slightly further in the simulation to alleviate
problems with numerical inaccuracy for small overlaps. The parameter δov is an additional
displacement that creates a small constant separation between particles. Packings of N = 4000
were typically generated with 104 attempts to remove overlap between particles and a minimum
of �V = 0.01. The parameter δov was chosen in the range 10−2–10−4. Varying the moment of
inertia Ix often leads to slightly denser packings.

2.1. Description of the structure of the generated packings

The following measures were used to describe the structure of the generated packings. Contact
numbers were determined by scaling up the cut spheres by a factor s, while keeping the aspect
ratio constant, and the resulting overlapping particles were counted as contacts. The number of
contacts was then plotted as a function of the threshold, s. A linear extrapolation was employed
to obtain the number of contacts when the threshold s is set to zero (figure 2).
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Figure 2. Typical example of the determination of the contact number through a linear extrapolation
to zero of the threshold s for cut spheres with aspect ratio 20.

Positional order was measured with the normalized radial pair distribution function
(calculated in the same way as for spheres), defined as

g(r) = n(r)/(ρ4πr 2�r) (6)

where n is the mean number of cut spheres in a spherical shell �r at distance r and ρ is the
mean number density.

In thermal systems cut spheres can form nematic and columnar phases [11], where in the
nematic phase the particles have no positional order but orientational order in one direction;
for the columnar phase there is positional order as well as orientational order. To quantify
the amount of order in generated packings an orientational alignment matrix Q is used [11],
defined as

〈Q〉 = 1

N

N∑

i=1

3

2
ûi û

T
i − 1

2
I , (7)

where ûi is a unit column vector normal to the planar part of a cut sphere, I is the identity
matrix and the nematic order parameter is given as

S = −2λ0, (8)

where λ0 is the middle eigenvalue of the matrix 〈Q〉 given by (7). When all vectors ui point in
the same direction then S = 1, whereas an isotropic distribution is quantified by S = 0.

From the graphical renderings (figure 6) of the packings it was indeed found that the cut
spheres tend to align in columns. Whether or not a particle belongs to a column was determined
via two threshold values, namely δpc to decide whether or not the particle’s face is nearly
parallel with that of its neighbor and δnc to assess whether or not the particle’s centre is close
enough to its neighbor in the direction given by the neighbor’s axis of symmetry. The criterion
for a particle in a column can then be stated as |ûi · û j | > 1 − δpc and |�ri j · û j | < L + δnc

together with |�ri j | < D, where �ri j is a vector connecting the two centers of a pair of cut spheres.
The average column length Lcol is given by Lcol = Ncol L, where L is the thickness of the cut
sphere and Ncol is the average number of particles per column. We note that these criteria are
not sensitive to columns, which have been deformed by having particles slide perpendicular
to their axis of symmetry, and that this sensitivity becomes more acute as the disks become
thinner. While we will not pursue this here we could test for this effect by introducing a third
parameter δsc with the condition, 1

2 |�ri j − �ri j · ûi ûi | + 1
2 |�ri j − �ri j · û j û j | < δsc.
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Figure 3. Volume fraction as a function of aspect ratio for spheroid packings. Spheres at aspect
ratio one form a singular point. (triangles) Event-driven simulation from Donev et al [10], (circles)
MCM for spheroids.

Figure 4. Volume fraction dependence as a function of aspect ratio for spherocylinders (circles) and
spheroids (triangles) simulated with the mechanical contraction method.

3. Results and discussions

3.1. Comparison of spherocylinders and spheroids

The volume fractions obtained for oblate and prolate spheroids using the mechanical
contraction method (MCM) are plotted in figure 3 and compared to event-driven molecular
dynamics simulations of spheroids [10].

As can be seen from figure 3, though event-driven simulation produces slightly higher
volume fractions, the dependence of volume fraction on aspect ratio is qualitatively the same for
both methods. Using the MCM method a comparison between spherocylinders and spheroids
can now be made (figure 4). To compare spherocylinders with spheroids, we do not use L/D
(as previously [5]) for the aspect ratio for spherocylinders but (L + D)/D instead (and L/D
for spheroids).

Figure 4 shows that spheroids and spherocylinders exhibit a very similar dependence
of volume fraction on aspect ratio. It would be interesting to see whether an event-driven
molecular dynamics simulation of spherocylinders shows the same behaviour but with a slightly
higher volume fraction than was the case for spheroids. Both spheroids and spherocylinders
show a maximum in volume fraction at an aspect ratio of roughly 1.5, close to that of spheres,
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which in figure 4 have an aspect ratio of 1. Spherocylinders, at least in our simulations, pack
slightly less efficiently than spheroids. It is known [5, 6] that for sufficiently high aspect ratios
the volume fraction scales inversely proportional to the excluded volume, and if we assume that
the average number of contacts to constrain a long spheroid or spherocylinder does not differ
much, we can attempt to relate the trend in figure 4 to a difference in excluded volume. The
orientationally averaged excluded volume for equal spheroids [12] with volume Vspheroid is

Vex

8Vspheroid
= 1

4
+ 3

16
z

[
1 + (1 − ε2)

2ε
ln

(
1 + ε

1 − ε

)][√
1 − ε2 + arcsin(ε)

ε

]
, (9)

where z = L/D for prolate spheroids and D/L for oblate spheroids and ε2 = 1 − 1/z2,
whereas the orientationally averaged excluded volume for spherocylinders [13] is

Vex = (4/3)π D3 + 2π L D2 + (π/2)DL2. (10)

In the high-aspect-ratio limit we expect the scaling [6]

φ ∼ 〈c〉 Vp

Vexcl
; L/D � 1, (11)

which for thin spherocylinders becomes

φ ∼ 〈c〉
2

D

L
; L/D � 1, (12)

whereas for spheroids substitution of equation (9) in (11) yields the asymptote:

φ ∼ 4〈c〉
3π

D

L
; L/D � 1. (13)

This suggests that in the thin-rod limit spherocylinders actually pack slightly more densely
than spheroids. Possibly the small difference between spherocylinders and spheroids (which
is reproducible) in figure 4 is therefore related to details of the contraction method. Next the
effect of a planar face on packing properties is investigated upon cutting equal slices from a
sphere.

3.2. Effect of a planar face on packing properties

Cut spheres with a low aspect ratio, i.e. a particle with a small planar face relative to the total
surface, show similar packing properties to those for the smooth curved particles discussed
previously. A slight deviation from a spherical shape leads to an increase in volume fraction
(figure 5(b)). However, upon increasing the contribution of the planar face, we find significantly
different packing effects in comparison to smooth convex particles. For large aspect ratios
the volume fraction clearly differs from the results for curved particles. The planar face
induces considerable alignment and ordering of particles that reduces the excluded volume
and, consequently, allows for a denser packing. Such an ordered packing cannot be considered
random anymore. At small aspect ratios random packings of cut spheres are insensitive to
simulation parameters, and we expect that different techniques, such as molecular dynamics
and experiments, should be able to reproduce these results. At high aspect ratios the degree of
ordering depend sensitively on the simulation parameters. Such alignment, of course, would
also increase the packing density for high-aspect ratio (sphero)cylinders. However, in the latter
case the thin rods form entangled structures that prohibit local alignment, which appears to be
an essential difference between packings of high-aspect-ratio rods and disks.

When the parameters in the simulation are varied in order to maximize the density,
the cut spheres of larger aspect ratio start to crystallize in a columnar phase. This can be
seen in figure 5(a), where large fluctuations in the volume fractions obtained from individual
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Figure 5. (a) Volume fraction dependence for the packing of cut spheres as a function of aspect ratio.
The spikes are caused by a columnar phase of the crystallized packing. Two simulations that only
differ in starting configuration are shown for two cases with varying δov: (triangles) δov = 0.01 and
(circles) δov = 0.001. (b) A close-up of (a). A slight deviation from an aspect ratio of 1 (sphere)
leads to an increase in volume fraction. (c) Two simulations for cut spheres with δov = 10−4.
(d) Comparison of spheroids (squares), spherocylinders (circles) and cut spheres (triangles).

simulations are indicative of packings that are sensitive to crystallization. Increasing the
aforementioned simulation parameter δov results in more order in the packing and shows
the sensitive dependence of the packing volume fraction on simulation parameters at aspect
ratios where crystalline ordering occurs. Graphical images of various packings, most showing
significant crystalline order, may be seen in figure 6. The strong ordering seen here is due to the
large value of the parameter δov = 0.01 that has been used. However, the ordering only occurs
for particles of larger aspect ratio than 2, as can be seen in figure 5(b). The contraction method
yields reproducible packings, which are not sensitive to arbitrary simulation parameters below
an aspect ratio of 2 where the disordered structures appear stable under compression. We argue
that this sensitivity of crystallization on arbitrary simulation parameters is not merely an artifact
of our simulation method but is relevant to experimental systems as well. For example friction
between particles, the employed packing procedures and other experimental details could all
be sensitively important to the propensity of the packing to crystallize. An example of this is
the finding of sediments of colloidal platelets [2] that pack less densely than is expected for a
columnar phase but agrees well with figure 5(c).

For cut spheres, starting from spherical shape, the volume fraction initially increases with
aspect ratio. However, for larger aspect ratios the volume fraction does not decrease as rapidly
as it does for spherocylinders and spheroids due to ordering of the cut spheres (figure 5(d)).
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Figure 6. Graphical examples of cut spheres (N = 4000) with δov = 0.01: (a) aspect ratio 1.25,
(b) aspect ratio 2, (c) aspect ratio 10, (d) aspect ratio 20, (e) nematic phase of aspect ratio 50,
(f) columnar phase of aspect ratio 2.5, ϕ = 0.765. The cut spheres are color coded according to the
length of the columns. (g) Illustration of the nematic effect.
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(a) (b)

(c)

Figure 7. Statistics of columns in cut sphere packings of the two runs, with δov = 10−3, that did
not exhibit a strong tendency to crystallize. (a) Average number of particles per column 〈Ncol〉.
(b) Average length of a column 〈Lcol〉. (c) Same as (a) but with δov = 10−4 which resulted in still
less tendency to crystallize.

This can also be seen from the images of cut sphere packings (see figure 6). For spherocylinders
and spheroids the excluded volume effects start to dominate for larger aspect ratios where it is
not possible to align themselves due to entanglement and jamming, whereas in a cut-sphere
packing, the cut spheres can reduce their excluded volume by alignment. The effect of this
alignment is that the cut sphere packings mimics a polydisperse packing of cylinders that are
formed from a column of connected cut spheres. The volume fraction for polydisperse particle
packings is often higher than for monodisperse particle packings [14]. For larger aspect ratios
the cylinders that are formed display significant ordering resulting in more efficient packing.

The statistics of the columns seen in figure 6 were studied by computing the average
number of cut spheres in a column Ncol and the average length of a column Lcol as detailed
in section 2, with results shown in figure 7. For large aspect ratios a nematic phase is observed.
In this case particles in a stairway-like alignment are being counted as belonging to a single
column. An example of this stairway alignment is given in figure 6(g), which is a rendering of
only the dark blue particles of figure 6(e) which shows strong orientational but poor positional
order, i.e. a nematic phase. Given that the nematic phase can be clearly seen in figure 6 we
decided to allow the identification of these stairway like columns rather than use the additional
criteria with the parameter δsc to remove them as discussed in section 2.

The number of particles per column Ncol increases with aspect ratio (figure 7(a)) but more
slowly than the inverse aspect ratio D/L, with the net result that the average column length
Lcol decreases (figure 7(b)).
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Figure 8. Contact number as a function of aspect ratio for cut sphere packings generated with
δov = 10−4 (circles) and δov = 0.01 (triangles).

3.3. Contact numbers

In a system of particles, ignoring finite size effects, there are Nd degrees of freedom where
N is the number of particles and d is the number of degrees of freedom per particle. For a
sphere, which has orientational symmetry, we need only consider the translational degrees of
freedom and thus d = 3. For a cut sphere there is only one, of a possible 3, orientational axis
of symmetry and thus d = 5. The isostatic conjecture [15] states that the number of constraint
equations is at least equal to the number of degrees of freedom Nd and that disordered packings
have the minimal number of contacts necessary for mechanical stability. Each contact is shared
by two particles and thus, by this conjecture, the average number of contacts per particle, 〈C〉,
is given by 〈C〉 = 2d . Chaikin et al [16] provide a convincing argument as to why the isostatic
conjecture may fail for non-spherical particles. In particular when the flat faces of a pair
of cut spheres are in contact a translational degree of freedom is constrained as well as two
orientational degrees of freedom. A pair of cut spheres can constrain three degrees of freedom
with a single contact and thus, in this case, one would expect the isostatic conjecture to fail.

The contact number as a function of aspect ratio is shown in figure 8 for the cases
δov = 0.01 and 10−4. The spikes in the graph for δov = 0.01 are indicative of the sensitivity
to crystallization. For aspect ratios close to unity the contact number is close to 〈C〉 = 6,
which is consistent with the isostatic conjecture for spheres as is well known from previous
studies [15, 16]. Consistent with previous work on spherocylinders [5] and spheroids [10] we do
not find any evidence for the average contact number rising discontinuously to 〈C〉 = 10 upon
departing from spherical symmetry. In [17] it was found that randomly packing the maximum
number of spheres does not produce optimal packings and that denser packings are formed by
having a contact number lower than the packing number of 8.4. Slightly deforming spheres
does not change the volume and surface area dramatically and therefore it is expected that 〈C〉
will not rise discontinuously to 10 to produce optimal packings for near-spheres. However, in
experimental spherocylinder packings the contact number clearly does approach 〈C〉 = 10 at
large aspect ratios [18], while experimental data at high aspect ratios have yet to be reported
for spheroids. In view of the argument of Chaikin et al [16] it is not surprising that we see no
evidence of 〈C〉 = 10 for cut spheres, violating the isostatic conjecture due to a single contact
being able to constrain more than one degree of freedom.

For high aspect ratios the contact number approaches the limit of approximately 2 for both
the disordered and ordered packings, which implies an aligned cut sphere above and below
each particle on average. This suggests that almost all the particles in these configurations are
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still able to move in the direction of the planar face of the cut sphere (i.e. essentially all the
particles are rattlers) and the system is not jammed. In the case of the disordered packings we
expect structural integrity to be lacking. While it may be able to support a compressive load
under some conditions, it will be very unstable to further ordering.

Again we note the considerable order that the system requires to become tightly packed
at large aspect ratios and the apparent frustration in the ordering process. This suggests that
the columns may be jammed while the particles forming them are able to slide or rattle in a
direction perpendicular to the column. For the crystalline phases, be they columnar or nematic,
we argue that structural integrity may be present. The number of contacts, two, is consistent
with constraining the particles in a column with the degrees of freedom perpendicular to the
column still being free. In the limit of long columns, formed from many cut spheres, and
treating each column to be effectively a single particle, we obtain a stable structure. The
same can be said for a nematic phase consisting of planes made from very thin cut spheres
in the limit of large surface area. In either case the contacts necessary to constrain the columns
or planes become insignificant in the limit. Thus we obtain a structure consisting of jammed
columns or planes, which are formed from thin disks that are able to slide or rattle in a direction
perpendicular to the column or in the plane, respectively.

Two contacts per particle is also consistent with the nematic phase as seen in figure 6(e).
There are large fluctuations in the number of contacts when δov = 0.01 due to the frustrated
ordering process.

3.4. Radial distribution functions

The normalized radial distribution function (rdf) of a random packing of cut spheres with aspect
ratio 1.11 is similar to the rdf of a random sphere packing (figure 9(b)) in both computer
simulations [17] and experiments [19]. In figure 9(b) there is a small peak at r = 0.9 which
corresponds to two touching parallel cut spheres (since the thickness of the cut sphere is 0.9)
and a peak at r = 0.95, due to the contact between a spherical face of one particle with the cut
face of another. The columnar crystal phase in figure 9(c) shows considerable structure in the
radial distribution function due to the high degree of order present.

The order parameter S as a function of aspect ratio (figure 10) shows interesting behavior.
For aspect ratios less than 2.0 the packings are disordered. When the overlap parameter is
large, δov = 0.01, the influence of the planar face shows up as an increased amount of order
with increasing aspect ratio. When the overlap parameter is small, δov = 10−4, the system’s
ability to form an ordered structure is highly frustrated. At aspect ratio 10 the order is lower
than expected for an ordered system (figure 10(b)). In these cases the MCM is no longer able
to successfully rearrange the system to make it crystallize. Whether or not a system is able to
form an ordered structure in an experiment, and if it does at what aspect ratio, very likely also
depends on factors such as friction between the particles and the method used to prepare the
packing. Nevertheless thin colloidal Gibbsite platelets with an aspect ratio of about 13 were
found [2] to pack into a sediment with a volume fraction of around 0.4, which actually agrees
quite well with our simulation results in figure 5(c).

4. Conclusions

For the case of spheroids our mechanical contraction method (MCM) produces random
packings with a marginally lower volume fraction than existing data generated with event-
driven molecular dynamics methods [10]. We have shown in addition that spherocylinders
and spheroids exhibit very similar packing behavior, consistent with their similarity in shape,
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(a) (b)

(c)

Figure 9. Normalized radial distribution functions: (a) disordered sphere packing, δov = 10−6;
(b) cut spheres with aspect ratio 1.11 and δov = 10−4; (c) columnar crystal of cut spheres with
aspect ratio 2.5 and δov = 0.01.

(a) (b)

Figure 10. Nematic order parameter S as a function of aspect ratio of cut spheres for simulation
runs with parameters (a) δov = 0.01 (circles) and 0.001 (triangles) and (b) δov = 10−4. Simulations
were repeated twice in each instance to check reproducibility.

with respect to the density maximum for near-spheres and the density decrease at higher aspect
ratios.

A slight deviation from spheres by the use of cut spheres yields random packings with a
higher volume fraction similar to elongating spheres, as with spherocylinders, or deforming
spheres, as is the case with spheroids. The low-aspect-ratio (near spherical) cut spheres
form disordered packings with similar structure to disordered sphere packings, as shown
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by the normalized radial distribution functions. The results for low-aspect-ratio cut spheres
are insensitive to simulation parameters and should be reproducible with different simulation
techniques. For higher aspect ratios the packing behavior of cut spheres is very different from
spheroids and spherocylinders. Under favorable simulation parameters the planar part of the cut
sphere promotes order in the packing by particle alignment, which reduces the excluded volume
and allows for denser packings than for random packings of high-aspect-ratio spherocylinders
and spheroids that form highly entangled structures. Thus, the jamming of thin cut spheres is
qualitatively different from jammed packings of spherocylinders and spheroids. Columns of
particles are formed with different orientations and the packing can no longer be considered
random or disordered. The nematic order parameter increases with aspect ratio, which is
indicative of this alignment effect. While at small aspect ratios the obtained disordered packings
are not sensitive to simulation parameters, the same cannot be said for the large aspect ratios.
Here the tendency to form an ordered structure is sensitive to the chosen simulation parameters
and we argue that this is due to the lack of a stable amorphous structure, for thin disks under a
compressive load. At these aspect ratios the system is very susceptible to ordering in a manner
that depends on the details much more sensitively than is the case for sphere like particles. We
conclude that packings of thin disks are far more sensitive to crystallization than is the case for
spheres. This is consistent with common intuition, gained from experience with objects such
as collections of coins.

The packings generated for the cut spheres are not isostatic, as can be seen from the contact
numbers and as expected due to a pair of contacting flat faces constraining more than a single
degree of freedom.
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